相机的针孔模型及其内参数,外参数的理解

在相机成像过程中,我们经常会提到相机的内参数外参数,这些参数决定了一个相机的成像的效果,是后续一系列计算机视觉问题的基础中的基础,然而因为较为底层的原因,现在却比较少人关心它,笔者最近在学习一些底层的计算机视觉成像理论,感觉有所裨益,希望能在此进行笔记,作为备忘,如果能对读者有所帮助,则是更好不过了。

2019.10.18 FesianXu at UESTC

前言

在相机成像过程中,我们经常会提到相机的内参数外参数,这些参数决定了一个相机的成像的效果,是后续一系列计算机视觉问题的基础中的基础,然而因为较为底层的原因,现在却比较少人关心它,笔者最近在学习一些底层的计算机视觉成像理论,感觉有所裨益,希望能在此进行笔记,作为备忘,如果能对读者有所帮助,则是更好不过了。如有谬误,请联系指正。转载请注明出处。

注意到本文全文采用齐次坐标系的表达方式,具体见[5]。

联系方式:

e-mail: FesianXu@gmail.com

github: https://github.com/FesianXu

知乎专栏: 计算机视觉/计算机图形理论与应用

微信公众号: 机器学习杂货铺3号店

相机的针孔模型

为了简单地解释一个相机为什么能够成像,我们通常会引入相机的针孔模型(pinhole model)。如Fig 1.1所示,在针孔模型中,相机呈现的都是倒像,这点其实很好理解,因为光线都是直线传播的,因此物理世界的实体(entity)在相机中的像必然是倒过来的。这里,为了让光只能通过一束(因为只有一束才能确保实体到像的一对一关系,然而实际中不可能做到理想的情况。),我们通常假设这个针孔是无限小的,然而因为无限小的针孔不能透光,为了使得成像有着充足的光线,针孔又必须足够的大,这俩要求显然是个矛盾,因此一般我们需要在针孔处安置透镜,而透镜的引入,包括透镜的厚度,透光度等等不理想的因素,使得成像分析变得复杂起来,但是我们这里还是按照针孔模型的结构去理解,以简化分析。(透镜这里的作用是为了更好的聚集光线。)

Fig 1.1 相机的成像。

我们需要知道的是,理想的相机模型是不需要透镜的,因为没有透镜的引入,因此成像没有因透镜产生的几何变形和模糊。在这个模型中,我们其实是在描述从实体的3D坐标到成像平面的2D坐标之间的映射关系 (注:此处是维度表达是非齐次坐标)。如Fig 1.2所示,现实中的实体点坐标为,其光线通过焦点聚集在成像平面上,但是这个像是倒像,不方便分析,为了方便,我们通常假设和倒像的成像平面对称的一端也有个成像平面,这个平面成像是正面的,其特性和真实的成像平面一模一样,除了呈现的是正像之外,因此我们正式地将其称为成像平面(image plane)。其真实实体的映射点坐标为

Fig 1.2 相机的针孔模型。

这里,为了方便接下来的讨论,我们将定义和解释以下术语:

  1. 焦点(camera center, optic center): 所有光线都会聚集的点,比如Fig 1.2中的点C。
  2. 成像平面(image plane):相机的CCD平面,图像在这个平面上形成,注意后续讨论的image plane一般会是指的呈现正像的那个平面。
  3. 光轴(principal axis):经过焦点,并且与成像平面垂直的线。
  4. 光轴面(principal plane): 包含着焦点,并且和成像平面平行的面。
  5. 焦距(focal length): 通常表示为,指的是焦点到成像平面的距离。
  6. 帧(frame): 这里提到的帧和我们通常视频处理里面的帧不太一样,这里提到的帧指的是一种度量,用于衡量一个特定的坐标系系统。
  7. 世界坐标系(world frame, world coordinate system):一个固定的坐标系,用于表示现实实体的坐标(比如点线面等等)。
  8. 相机坐标系(camera frame, camera coordinate system):将相机的焦点作为其原点,光轴作为其Z轴的坐标系。
  9. 图像坐标系(image frame, image coordinate system):描述二维图像的像素位置,通常以图像的左上角或者图像的中心视为坐标原点。
  10. 外参数(extrinsic parameters): 外参数描述了如何将实体的3D点(以世界坐标系描述)映射到以相机坐标系描述的3D点上,显然,这个是坐标系的平移和旋转过程。
  11. 内参数(intrinsic parameters):内参数描述了如何将已经是用相机坐标系描述的3D点投射到成像平面上。
  12. 视网膜平面(image, retina plane):图像在这个平面上成像,注意到,图像平面用相机坐标系度量,其单位是mm,毫米,属于物理单位。
  13. 图像帧(image frame):这个帧和我们通常理解的帧一致,其用像素(pixel)去描述图像平面,而不是mm了,属于逻辑单位。(比如一个像素对应多少mm的距离是不同的。)
  14. 光心(principal point): 指的是光轴和成像平面的交点。

这里我们给出一个图取参数上面谈到的一些概念,注意到的是其中的virtual image plane其实是本文中谈到的成像平面。[1]

Fig 1.3 相机针孔成像过程及其术语解析。

坐标系的改变

为了将一个在世界坐标系中表示的点,以相机坐标系的形式进行表达,我们需要进行坐标系的平移和旋转变化(即是欧几里德变换[4])。比如Fig 2.1所示,我们需要通过平移和旋转将转换到,容易知道,在不同坐标系中,对于同一个实体点来说,其表达形式都不同。我们接下来考虑怎么进行这个坐标系转换。

Fig 2.1 世界坐标系 到 相机坐标系的转换过程。

通常来说,这个过程可以简单表示为,平移向量和旋转矩阵的操作,如: 其中,是世界坐标系坐标,是相机坐标系坐标,是旋转矩阵(注意这里是齐次坐标系的表达方法,见[5]),是用世界坐标系描述的焦点。通过式子(2.1)我们实现了世界坐标系到相机坐标系的变换,不过注意到这里还停留在三维点之间的欧几里德变换。

在以上的讨论中,我们把坐标从世界坐标系转换成了相机坐标系,但是我们通常是需要用图像坐标系去表示图片中的某个像素点的,这里涉及到了三维点到二维点的映射问题,因此我们还需要进行 相机坐标系到图像坐标系的转换,即是

我们考虑到在中心投影中,如Fig 2.2中,我们根据相似三角形的规律有,其中以相机坐标系描述的点投影到成像平面上有

Fig 2.2 中心投影,符合相似三角形的比例关系。

用矩阵形式表达就是: 可知此时有: ,其是用齐次坐标系表达的,等价于非齐次形式的

考虑到公式(2.1)和(2.3),我们能够把一个3D点映射成2D点: 这里的称之为外参数(extrinsic parameters),这些参数描述了如何将世界坐标系的实体3D点转换到以相机坐标系描述的3D点。而前面乘上的形状为的矩阵是投影矩阵,负责从相机坐标系的三维点映射到二维上,当然这个形式并不完整,我们接下来会继续探讨这一部分,我们要继续考虑相机成像过程中的工艺导致的问题修正。

那么总结来说,其实对于坐标系的平移和旋转,我们可以用下面的几副图来表示:

首先,我们有两个不同的坐标系,左边的世界坐标系(X,Y,Z)和右边的相机坐标系(u,v,w)

然后,我们通过将两者的原点O和C以平移的方式挪到一起,我们通过平移矩阵T去实现。

最后,利用旋转矩阵,将其进行坐标轴的旋转和对齐即可。

考虑更多因素

注意到通过上面的讨论,我们转换得到的二维像点的单位仍然是物理单位mm,如果我们需要用像素去度量(实际上也是用像素度量的),我们仍需要进行其他处理。(内参数的协助) 在这里是以光心作为其原点的,而传统的表示中,我们一般以左上角的作为原点进行描述。因为一些制造工艺上的不精确性,我们的成像传感器CCD通常不是完美的矩形网格,可能会有变形。比如偏斜(skewness)用于描述CCD单元的变形程度,见Fig 2.3。

Fig 2.3 CCD单元的偏斜。

那么经过矫正,其正确的坐标应该是: 考虑到CCD的偏斜,和物理单位到像素单位的转变,我们有以下公式:

其中有。在这个公式(2.6)中,我们发现有很多陌生的符号,其中我们将: 中的参数称之为内参数(intrinsic parameters),我们这里讨论下这些参数:

  1. 是在x轴和y轴(指的是有偏斜过后的),每个单位长度的像素数量。通过这俩参数可以将物理单位mm转换为像素。
  2. 是相机的焦距。
  3. 是在偏斜的图像帧中的光心(以像素为单位)。
  4. 是偏斜系数(skewness factor),当像素是矩形的时候其为0。
  5. 是两个图像SSD平面边缘之间的偏斜角度,见Fig 2.3。

这三个内参数矩阵可以合为一个矩阵,通过这个矩阵,我们可以将用相机坐标系表示的3D点映射到成像平面上,从而得到我们目标需要的2D点。


总结

在这篇博文中,我们讨论了相机的针孔模型,其中涉及到了相机的内参数和外参数等,我们将会在以后的文章中发现,这些参数对于相机的呈像是很重要的,因此需要去通过相机标定(camera calibration)去计算这些参数。


Reference

[1]. https://jp.mathworks.com/help/vision/ug/camera-calibration.html

[2]. Forsyth D , JeanPonce, 福赛斯, et al. Computer vision : a modern approach[M]. 电子工业出版社, 2012.

[3]. 电子科技大学自动化学院 杨路 老师 计算机视觉课程课件。

[4]. https://blog.csdn.net/LoseInVain/article/details/104533575

[5]. https://blog.csdn.net/LoseInVain/article/details/102756630